Notes

NEW ANTITUMOR ANTIBIOTICS, DUOCARMYCINS B₁ AND B₂

Tatsuhiro Ogawa, Michio Ichimura, Shigeo Katsumata, Makoto Morimoto and Keiichi Takahashi*

Pharmaceutical Research Laboratories, Kyowa Hakko Kogyo Co., Ltd., Nagaizumi-cho, Shizuoka 411, Japan

(Received for publication March 18, 1989)

In the course of our screening program for new antitumor antibiotics, we have previously reported on new antibiotics, duocarmycins A (1), C_1 C_2 and C_2 C_3 .

Medium modification has produced two new antitumor antibiotics duocarmycins B_1 (4) and B_2 (5) in the fermentation broth of *Streptomyces* sp. DO-89. In this paper, the production, isolation, physico-chemical properties and biological properties of duocarmycins B_1 (4) and B_2 (5) are reported.

Fermentation of *Streptomyces* sp. DO-89 was carried out at 28°C for 100 hours in a 200-liter fermenter with aeration at 15 liters/minute and

R = Cl

R = Br

agitation at 200 rpm. The production medium consisted of maltose 5%, dry yeast 1.5%, Ebios (Asahi Breweries, Limited) 2.5%, KBr 1%, KH_2PO_4 0.05%, $MgSO_4 \cdot 7H_2O$ 0.05% and CaCO₃ 0.5% (pH 5.0). Production of antibiotics was monitored by HPLC analysis (YMC ODS AM312, MeOH - 0.05 m phosphate buffer (pH 4.0), 3:2). The fermentation broth (150 liters) was adjusted to pH 5.0 with hydrochloric acid and was filtered with the aid of diatomaceous earth. The mycelial cake was extracted with propanol. The propanol extract was diluted with water and was applied to a column of Diaion HP-20 (Mitsubishi Chemical Industries Limited). The column was washed with water and with 80% aqueous methanol. Duocarmycin B₁ (4) was eluted with methanol followed by duocarmycin B₂ (5). The duocarmycin B₁ fraction was concentrated and chromatographed on a column of Diaion HP-20SS (Mitsubishi Chemical Industries Limited) with 85% aqueous methanol (pH 4.0). Active fractions were combined and extracted with ethyl acetate. The extract was concentrated and added with n-hexane to yield pure duocarmycin B_1 (4) as an yellow powder. Duocarmycin B₂ (5) fractions were concentrated

> 3 R=Cl 5 R=Br

Fig. 1. Structures of duocarmycins.

Table 1. Physico-chemical properties of duocarmycins B₁ and B₂.

	B_1	\mathbf{B}_2
Nature	Yellow powder	Orange crystal
MP (°C)	148~149	214~215
$[\alpha]_{D}^{20}$ (c 0.2, MeOH)	-113.5°	−57.5°
Elemental analysis		
Calcd:	C 53.07, H 4.45, N 7.14	C 53.07, H 4.45, N 7.14
Found:	C 53.20, H 4.66, N 6.46	C 53.20, H 4.49, N 7.18
MS $(m/z, (M+H)^+)$	588	588
Molecular formula	$\mathbf{C}_{26}\mathbf{H}_{26}\mathbf{N}_{3}\mathbf{O}_{8}\mathbf{B}\mathbf{r}$	$C_{26}H_{26}N_3O_8Br$
UV λ_{\max} nm (ε)	208 (38,000), 329 (17,800),	208 (45,000), 248 (sh, 19,100),
	410 (3,200)	298 (20,300), 337 (31,500),
		434 (4,400)
Solubility		
Soluble:	MeOH, CHCl ₃ , EtOAc, DMSO	MeOH, CHCl ₃ , EtOAc, DMSO
Insoluble:	Hexane, water	Hexane, water

Table 2. 13C NMR data for duocarmycins.

14010 2.		ir data 101	4400411117	
Carbon	C ₁ (2) ³⁾	B ₁ (4)	C ₂ (3) ³⁾	B ₂ (5)
C-2	70.1	71.1	71.2	71.2
C-3	197.8	196.8	196.6	196.6
C-3a	114.8	117.1	119.5	120.2
C-3b	114.7	116.6	115.6	115.6
C-4	32.9	33.9	42.3	42.0
C-4a			46.4	35.6
C-5	54.7	44.8	55.0	56.1
C-6	51.2	53.0		
C-6a			137.7	137.6
C-7			112.5	112.5
C- 7a	128.4	128.9		
C-8	117.2	118.2	150.1	150.4
C-8a			144.2	144.2
C-9	152.2	151.7		
C-9a	141.2	141.6		
2-CH ₃	20.2	21.8	22.0	22.0
2-COOCH ₃	169.2	169.7	169.6	169.5
2-COOCH ₃	52.6	53.4	53.4	53.4
C-2'	130.7	129.1	129.1	129.1
C-2'a	163.3	164.5	160.5	160.5
C-3'	106.6	108.3	107.9	107.9
C-3'a	122.7	123.1	123.5	123.5
C-4'	97.9	97.9	98.0	98.0
C-5'	149.1	150.2	150.4	150.1
C-6'	139.5	140.4	140.9	140.9
C-7'	139.0	138.9	138.7	138.7
C-7'a	125.4	126.1	126.0	126.0
5'-OCH ₃	55.9	56.3	56.4	56.4
6'-OCH ₃	60.9	61.5	61.5	61.5
7′-OCH ₃	61.0	61.2	61.2	61.2

 C_1 in DMSO- d_6 . B_1 , C_2 and B_2 in CDCl₃.

and chromatographed over Diaion HP-20SS using 85% aqueous ethanol (pH 4.0). Active fractions were combined and crystallized from

Table 3. Antitumor activities of duocarmycins against sarcoma 180.

Compound	Dose (mg/kg)	T/C* (%)
A (1)	0.0075	0.26
$C_1(2)$	6	0.28
$C_{2}(3)$	3	0.19
\mathbf{B}_1 (4)	0.5	0.22
B_2 (5)	0.25	0.28
Mitomycin C	4	0.30

Single dose given iv on day-1 after tumor inoculation.

methanol to yield pure duocarmycin B_2 (5) as an orange crystal.

The physico-chemical properties of duocarmycins B_1 (4) and B_2 (5) are summarized in Table 1. The UV spectrum of duocarmycin B₁ (4) was very similar to that of duocarmycin C_1 (2). The molecular formula of duocarmycin B₁ (4) was determined as C₂₆H₂₆N₃O₈Br by fast atom bombardment (FAB)-MS and microanalysis. 1H and 13C NMR spectra of duocarmycin B₁ (4) were quite similar to that of duocarmycin C_1 (2) except the signal of attributed to C-5 (δ 44.8). The molecular formula of duocarmycin B₂ (5) was determined as C₂₆H₂₆N₃O₈Br by FAB-MS and microanalysis. UV spectrum, and ¹H and ¹⁸C NMR spectra of duocarmycin B₂ (5) were also similar to that of duocarmycin C₂ (3) except the signal of attributed to C-4a (δ 35.6). These observations indicated that in-

^{*} T/C represents the ratio median tumor volume of the treated group divided by that of the control group.

stead of Cl atom in duocarmycin C_1 (2), Br atom is attached to C-5 in duocarmycin B_1 (4). Duocarmycin B_2 (5) is also substituted by Br atom instead of Cl atom in duocarmycin C_2 (3). These structures were also supported with next experiment. Treatment of duocarmycin A (1) with 1% KBr - acetone (1:1) gave duocarmycins B_1 (4) and B_2 (5) in the ratio of 1:4. This results suggest that duocarmycin A (1) is first produced by the microorganism, and bromide ion is added to duocarmycin A (1) forming duocarmycins B_1 (4) and B_2 (5). Treatment of duocarmycin B_2 (5) with base such as *iso*-Pr₂NEt or 1,5-diazabicyclo[5.4.0]undecene-5(DBU) gave easily duocarmycin A (1).

The LD₅₀ value of duocarmycin B_1 (4) is 0.37 mg/kg (iv) in mice and that of duocarmycin B_2 (5) is 0.28 mg/kg (iv). Duocarmycins B_1 (4) and B_2 (5) are more potent than duocarmycins C_1 and C_2 . The antitumor activity of duocarmycins against mouse sarcoma 180 is summarized in Table 3. Further detailed studies on antitumor spectra and toxicity of duocar-

mycins are in progress.

References

- TAKAHASHI, I.; K. TAKAHASHI, M. ICHIMURA, M. MORIMOTO, K. ASANO, I. KAWAMOTO, F. TOMITA & H. NAKANO: Duocarmycin A, a new antitumor antibiotic from *Streptomyces*. J. Antibiotics 41: 1915~1917, 1988
- ICHIMURA, M.; K. MUROI, K. ASANO, I. KAWAMOTO, F. TOMITA, M. MORIMOTO & H. NAKANO: DC89-A1, a new antitumor antibiotics from Streptomyces. J. Antibiotics 41: 1285~1288, 1988
- YASUZAWA, T.; T. IIDA, K. MUROI, M. ICHI-MURA, K. TAKAHASHI & H. SANO: Structures of duocarmycins, novel antitumor antibiotics produced by *Streptomyces* sp. Chem. Pharm. Bull. 36: 3728~3731, 1988
- 4) OHBA, K.; H. WATABE, T. SASAKI, Y. TAKEUCHI, Y. KODAMA, T. NAKAZAWA, H. YAMAMOTO, T. SHOMURA, M. SEZAKI & S. KONDO: Pyrindamycins A and B, new antitumor antibiotics. J. Antibiotics 41: 1515~1519, 1988